摘要

针对超限学习机在大数据环境下计算负担过重的问题,文中提出正则化超限学习机的多分块松弛交替方向乘子法及N-等分和N/2-等分情形的标量化实现.模型分块使算法具有高度的并行结构,与松弛技术结合提高算法的收敛速度.通过分析,建立算法收敛的充要条件,给出最优收敛率及最优参数.在基准数据集上仿真计算收敛率随分块数的变化关系,对比不同算法的收敛速率和GPU加速比.实验表明,文中算法具有较低的计算复杂度和较高的并行性.