摘要
为了解决在无线网络中部署联邦学习面临的通信资源消耗大和设备计算资源有限的问题,提出一种基于无线设备直通(D2D)网络的分层联邦学习框架.与传统架构不同,模型训练采用分层聚合.该框架通过D2D网络进行簇内聚合,各个簇同时进行去中心化训练,从每个簇中选择一个簇头上传模型至服务器进行全局聚合.通过将去中心化学习与分层联邦学习结合,降低了中央节点网络流量.使用D2D网络中节点的度来衡量模型收敛性能,通过最大化所有簇头的度之和,对簇头选择与带宽分配问题进行联合优化,并且设计一种基于动态规划的算法求出最优解.仿真结果表明,与基线算法相比,该框架不仅能够有效地降低全局聚合的频率和减少训练时间,而且能够提高最终训练得到的模型性能.
-
单位电子工程学院