摘要
为改进集合转换卡尔曼滤波方法(Ensemble Transform Kalman Filter,ETKF)在初始扰动中离散度偏小的问题,考虑引入物理不确定性。使用初始时刻离散度检验两种ETKF初始扰动方案改进的程度,通过动力和水汽条件分析探求改进机制。利用WRF模式构建更新预报系统,选取2014年5月一次暴雨个例进行集合降水预报试验,通过ETKF方法设计两种不同的初始扰动方案。结果表明:在分析循环中引入多物理扰动的初始扰动方案(multi)相比单一物理过程的初始扰动方案(mono)在初始时刻离散度和模拟动力水汽条件以及降水评分上均有较大改进。初始扰动中multi的离散度相比mono整体更优,显然添加了多物理扰动方案的试验对结果有改进作用;在对两种方案的机理分析中,multi对于降水位置的明显改善主要取决于散度及水汽通量散度模拟能力的提高;在离散度分析中,multi方案在强对流区域的改进效果比在整个区域中的更好,而对各变量的离散度和均方根误差之比相当,说明集合预报系统的合理性;对各量级预报结果评分显示,multi方案均呈现较好表现能力。
-
单位南京信息工程大学; 气象灾害教育部重点实验室