一种基于ResNet与UNet模型的图像分割方法

作者:侯彪; 焦李成; 付勐; 马晶晶; 张向荣; 马文萍
来源:2019-12-25, 中国, ZL201911358532.1.

摘要

本发明公开了一种基于ResNet与UNet模型的图像分割方法,将原始的RGB三通道图像大小进行调整,并对应调整标签图像大小;将调整后的RGB图像作为UNet图像分割模块的输入;将调整后的RGB图像作为ResNet特征提取模块的输入,保留前三层的输出结果替换UNet第三、四、五层的输出结果;得到基于ResNet和UNet的图像分割训练模型,并对模型进行训练;将训练得到的模型参数作为预测模型,进行图像分割。本发明利用ResNet在特征提取方面的优势,提高图像分割的质量,解决单一UNet模型应用于图像分割易产生的特征提取不够准确,区域一致性差,边界模糊的问题。