摘要
社交机器人一直在应用中不断发展,并且为了逃避现有的检测方法,变得更加先进和复杂,较大地影响了原有部分社交机器人检测方法的效果.检测社交机器人成为了一项漫长而又艰巨的工作.在社交机器人检测领域中,目前存在着已公开相关数据集较少的情况,需要人工标注大量的数据.本文提出了一种结合主动学习与关系图卷积神经网络(RGCN)的检测方法——ALRGCN,用以解决人工标注大量数据成本较高的问题.其主要思路是利用主动学习方法来扩充标记数据集,以最大化人工标注的价值.主动学习利用种子选择算法构建初始训练集以及不确定性采样方法筛选出较高信息熵的样本,交由分类模型进行训练,旨在通过专业人员的经验来人工标注一些分类器难以分类的数据.鉴于社交机器人通常以集群的形式出现,本文引入了RGCN来捕捉其网络结构特征.RGCN可以有效地分析节点及其相邻节点的属性,进而帮助该节点进行分类.实验在TwiBot-20数据集上进行,通过对比进行使用的基线实验,ALRGCN在F1上取得了2.83%的提升.实验结果证明,ALRGCN在标注样本更小的情况下可以更有效地检测出社交机器人.
- 单位