摘要

To investigate the evolution of inclusions in high‐Al steel with addition of La, a series of laboratory experiments and thermodynamic calculations are performed, considering the reaction time and amount of La added. The main inclusions in the high‐Al steel without the addition of La are Al2O3, MnS, and Al2O3–MnS. The La treatment can efficiently modify Al2O3 to La–Al–O or La–O–S inclusions. For La additions less than 0.0041?wt%, the evolution route for the inclusion in high‐Al steel is Al2O3 → LaAl11O18 → LaAlO3 with an increase in reaction time. For high La additions, the evolution route for the Al2O3 inclusion is Al2O3 → LaAl11O18 → LaAlO3 → La2O2S → La2S3. The experimental results correlate with those of the thermodynamic analysis. Notably, excess La in high‐Al molten steel may consume O and S to form La oxysulfide and sulfide, respectively, which prevents the precipitation of MnS inclusion and promotes the formation of AlN inclusion during solidification.(#br)Herein, the effect of rare‐earth lanthanum (La) on inclusion evolution in high‐Al steel is investigated. A low La content effectively modifies Al2O3 inclusion to LaAlO3, and a higher La content may promote the formation of AlN, La oxysulfide and sulfide. The recommended La content in high‐Al steel is in the range of 0.004–0.005?wt%.