摘要

准确分割肺结节在临床上具有重要意义。计算机断层扫描(computer tomography, CT)技术以其成像速度快、图像分辨率高等优点广泛应用于肺结节分割及功能评价中。为了进一步对肺部CT影像中的肺结节分割方法进行探索,本文对基于CT影像的肺结节分割方法研究进行综述。1)对传统的肺结节分割方法及其优缺点进行了归纳比较;2)重点介绍了包括深度学习、深度学习与传统方法相结合在内的肺结节分割方法;3)简单介绍了肺结节分割方法的常用评价指标,并结合部分方法的指标表现展望了肺结节分割方法研究领域的未来发展趋势。传统的肺结节分割方法各有优缺点和其适用的结节类型,深度学习分割方法因普适性好等优点成为该领域的研究热点。研究者们致力于如何提高分割结果的准确度、模型的鲁棒性及方法的普适性,为了实现此目的本文总结了各类方法的优缺点。基于CT影像的肺结节分割方法研究已经取得了不小的成就,但肺结节形状各异、密度不均匀,且部分结节与血管、胸膜等解剖结构粘连,给结节分割增加了困难,结节分割效果仍有很大提升空间。精度高、速度快的深度学习分割方法将会是研究者密切关注的方法,但该类方法仍需解决数据需求量大和网络模型超参数的确定等问题。