摘要

电力系统的短期负荷预测是电力系统保证稳定运行的重要环节,也是区域配电调度的重要依据。为了提高短期负荷预测的精准度与稳定性,本文提出一种基于粒子群算法与遗传算法共同优化BP神经网络的负荷预测方法。针对BP神经网络存在的权值取值不确定、收敛速度慢等问题,将粒子的维度空间与人工神经网络的权值建立映射关系,使得神经网络的均方误差作为粒子群的适应函数,同时,引入遗传算法对其迭代过程进行优化,利用遗传算法全局搜索能力对极值进行搜索,并对粒子的适应度进行分类。最后通过实例分析,证明了该方法的有效性。