摘要

本文采用简单的化学还原辅助水热法制备了一种新型Si C/Pt/Cd SZ型异质结纳米棒,并将Pt纳米粒子锚定在Si C纳米棒与Cd S纳米粒子的界面间,诱导电子-空穴对沿着Z型迁移路径进行转移。进行一系列的表征来分析该催化体系的结构,形貌和性能。X射线衍射(XRD)和X射线光电子能谱(XPS)结果表明,成功合成了具有较好晶体结构的光催化剂。通过透射电子显微镜证明,Pt纳米颗粒生长在Si C纳米棒和Cd S纳米颗粒的界面间。UV-Vis漫反射光谱显示,所制备的Z-型异质结样品具有比原始Cd S材料更宽的光吸收范围。光致发光光谱和瞬态光电流响应进一步证明具有最佳摩尔比的Si C/Pt/Cd S纳米棒样品具有最高的电子-空穴对分离效率。通过控制Si C和Cd S的摩尔比,可以有效地调节Si C/Pt纳米棒表面Cd S的负载量,从而使得Si C/Pt/Cd S纳米棒光催化剂达到最佳性能。当Si C:Cd S=5:1 (摩尔比)时可以达到最佳产氢性能,其最大析氢速率达到122.3μmol·h-1。此外,从扫描电子显微镜、XRD和XPS分析可以看出,经过三次循环测试后,Si C/Pt/Cd S光催化剂的形貌和晶体结构均基本保持不变,表明Si C/Pt/Cd S纳米复合材料在可见光下产氢时具有稳定的结构。通过选择性光沉积技术在光反应中同时进行Au纳米粒子的光还原沉积和Mn3O4纳米粒子光氧化沉积以证明电子-空穴对的Z-型转移机制。实验结果表明,Cd S导带上的电子主要参与光催化过程中的还原反应,Si C价带上的空穴更容易发生氧化反应,其中,Si C的导带上的电子将与Cd S价带上的空穴复合形成Z型传输路径。因此,提出了在光催化产氢过程中Si C/Pt/Cd S纳米棒催化体系可能的Z-型电荷迁移路径来解释产氢活性的提高。该研究为基于Si C纳米棒的Z-型光催化体系的合成提供了新的策略。基于以上分析,Si C/Pt/Cd S纳米复合材料具有高效、廉价、易于制备、结构稳定等优势,具有突出的商业应用前景。