摘要
机器视觉作为设备操作人员的工具,在泡沫浮选设备的监测中得到了广泛的应用。利用泡沫图像数据集建立预测识别模型,以初级泡沫特征参数为输入,以品位和回收率等浮选指标为输出。根据是否需要手动提取浮选泡沫图像特征,可以将特征提取算法划分为两大类别:一种是基于颜色、形态特征等的传统手动特征提取方法,另一种是基于深度神经网络的自动特征提取方法。本文总结并归纳了近年来浮选泡沫图像特征提取算法领域的研究进展,分析了各种方法的优势和不足,对当前难以人工识别泡沫状态及实现浮选自动化提升浮选效率,具有一定的指导价值。
- 单位