摘要

针对于一维卷积神经网络使用单卷积核可能出现特征丢失,特征提取不充分,无法利用时间序列信息,以及Softmax无法进一步提升诊断准确率等问题。提出一种多通道一维卷积双向门控循环网络的深度学习算法。首先,设计一个3通道的一维卷积神经网络进行不同尺寸的故障特征提取;其次,引入双向门控循环单元挖掘特征信号中的动态时间序列关系;最后,采用支持向量机替换传统卷积神经网络中常用的Softmax进行故障分类,进一步提升诊断的准确率。实验证明,该方法将故障诊断的准确率提升至99.8%。通过与其他方法的对比,证明了该方法有着更高的准确率和更好的鲁棒性。

全文