摘要
为准确获取柑橘果园空间分布信息,实现柑橘的种植结构调整、产量估算和资源管理,以赣南3个柑橘种植主产区(信丰县、安远县及寻乌县)为研究对象,针对南方地区多云多雨导致传统光学影像较为缺乏的问题,使用Sentinel系列数据和PIE-Engine平台,构建和优选了光谱特征、植被水体指数特征、红边波段特征和纹理特征,并引入时间序列Sentinel-1合成孔径雷达(SAR)数据的后向散射系数,共同探讨不同特征组合对柑橘种植园的识别提取效果,基于随机森林算法并融合Sentinel-2与时序Sentinel-1 SAR特征识别提取了赣南柑橘种植区。结果表明:5、9、11月柑橘种植园与其他地物的平均后向散射系数分离性最佳,是识别提取柑橘的关键时期;指数特征及纹理特征的参与分类有利于分类效果且提高了分类精度;相较于单一SAR特征及指数、纹理特征,加入时序SAR特征的分类结果中总体精度达90.084%,Kappa系数达0.863,错分漏分误差较小,符合实际地物分布情况,说明了时序SAR特征的可用性和实用性。本研究可为多云多雨的南方柑橘果园的识别提取提供参考,具有一定应用潜力。
- 单位