摘要
在群智能算法的改进中,常利用优秀个体加速算法收敛,但对其依赖过度会导致种群多样性和算法全局收敛性下降的现象。对此,提出一种改进X-best引导个体和动态等级更新机制的鸡群算法。首先,在个体更新阶段不仅引入优秀个体加速收敛,并且通过普通个体对优秀个体的影响进行适当平衡,因此,优秀个体与普通个体的信息都能得到利用,进而种群多样性和算法全局收敛性得到提升。其次,通过对等级更新参数进行动态优化,加强了种群等级更新机制对算法收敛的促进作用。最后,经过时间复杂度与收敛性分析,证明了改进算法仍具有简单性和全局收敛性。仿真结果表明:所提出的改进算法较其他对比算法在寻优精度、寻优成功率和收敛速度等方面都具有明显优势。
-
单位空军工程大学