摘要

软测量技术是工业过程控制和分析的有力工具,它的核心问题是如何建立学习速度快且泛化性能优良的软测量模型。提出了一种基于核主元分析(KPCA)和最小二乘支持向量机(LSSVM)的软测量建模方法,利用核主元分析提取软测量输入数据空间中的非线性主元,然后用最小二乘支持向量机进行建模,不但降低模型复杂性,而且提高了模型泛化能力。最后将上述方法用于PTA结晶过程的软测量建模,仿真结果表明:与SVM、PCA-SVM建模方法相比,该KPCA-LSSVM方法具有学习速度快、跟踪性能好、泛化能力强等优点,是一种有效的软测量建模方法。

全文