摘要
本发明提供了一种独立于数据类型的无监督异常检测方法,涉及传感器网络,可靠系统等的异常检测领域,包括:(1)对给定的任意类型的数据进行预处理,构建训练数据集;(2)构建自编码器网络,对数据进行维度压缩和特征提取;(3)构建正常数据提取层,对数据进行进一步正常特征提取;(4)用概率密度函数高斯混合模型对正常特征的数据分布进行拟合;(5)对无监督异常检测网络进行训练;(6)使用训练完成的神经网络对测试数据集进行预测,当测试数据的异常概率大于指定阈值时,将该数据视为异常。克服异常检测中异常标签难以获得和针对特定数据类型设计的模型无法应用于其他数据类型的挑战,提高性能的同时又保证了数据类型可扩展性。
- 单位