摘要

在图像语义分割任务中,大多数方法未将不同尺度、不同层次的特征充分利用,就直接进行上采样,这样会造成一些有效信息被当成冗余信息而被摒弃,从而降低对某些细小类别和相似类别分割的准确性和敏感性。为此,提出一个多级特征融合网络(Multi-level feature fusion network, MFFNet)。MFFNet采用编码器-解码器结构,在编码阶段,通过上下文信息提取路径和空间信息提取路径分别获取上下文信息与空间细节信息,增强像素间关联性与边界准确性;解码阶段设计一条多级特征融合路径,利用混合双边融合模块融合上下文信息;利用高低特征融合模块融合深层信息与空间信息;利用全局通道融合模块获取不同通道之间的联系,实现不同尺度信息的全局融合。MFFNet网络在PASCAL VOC 2012和Cityscapes验证集上的平均交互比(Mean intersection over union, MIoU)分别为80.70%和76.33%,取得了较好的分割结果。