摘要
针对红外偏振与光强图像彼此包含共同信息和特有信息的特点,提出了一种基于双树复小波变换和稀疏表示的图像融合方法.首先,利用双树复小波变换获取源图像的高频和低频成分,并用绝对值最大值法获得融合的高频成分;然后,用低频成分组成联合矩阵,并使用K-奇异值分解法训练该矩阵的冗余字典,根据该字典求出各个低频成分的稀疏系数,通过稀疏系数中非零值的位置信息判断共有信息和特有信息,并分别使用相应的规则进行融合;最后,将融合的高低频系数经过双树复小波反变换得到融合图像.实验结果表明,本文提出的融合算法不仅能较好地凸显源图像的共有信息,而且能很好地保留它们的特有信息,同时,融合图像具有较高的对比度和细节信息.
-
单位天津大学; 电子工程学院