摘要

【目的】为构建疾病预测模型,以重度急性胰腺炎早期预警为例,提出一种基于支持向量机的疾病预测模型构建方法。【方法】基于支持向量机LIBSVM3.11,采用优化后的径向基核函数产生的分类器,同时结合统计学单因素及多因素Logistic回归分析方法,进行特征变量选取,提出一种简单易行的重度急性胰腺炎早期预警模型。【结果】所构建重度急性胰腺炎预警模型准确率达70.37%。最终纳入模型变量包括白细胞计数、血清钙离子、血清脂肪酶、收缩压、舒张压及胸腔积液。【局限】样本量有限,主要采用支持向量机构建疾病预测模型,未来可建立系统,突出临床应用价值。【结论】支持向量机可构建疾病预测的最优模型,进一步建立系统,辅助临床决策。