摘要
本文利用深度学习在模式识别和特征提取方面的优势,提出了基于堆栈自编码和Softmax算法的多联机制冷剂充注量故障诊断策略。针对堆栈自编码和Softmax的故障诊断方法,本文主要从网络的层数、隐含层节点数、学习率大小、迭代次数以及Batchsize(批次样本数)大小这些超参数的选择探索与故障诊断模型性能的关系。此外,在堆栈自编码的基础上,本文还采用了传统自编码的变种(降噪自编码和稀疏自编码)来对故障诊断模型进行优化。结果表明:堆栈降噪自编码及堆栈稀疏自编码与Softmax的故障诊断模型能获得更好的诊断性能,在一定参数条件下诊断准确率均能达到96%以上。
-
单位华中科技大学; 合肥通用机械研究院