摘要

针对目前研究的肌电假手的控制方式存在不直观、不灵活,缺乏多感知功能等缺陷,设计了一种具有模式识别和多感知功能的肌电假手的控制方法。该方法采用粒子群优化算法改进的支持向量机(PSO-SVM)构建动作分类器,实现肌电假手动作的模式识别与在线控制。利用经验模态分解法分解滑觉信号,引入模糊逻辑控制,对硬度、滑觉程度不同的物体,实现握力的自适应调节。实验结果表明:采用PSO-SVM算法在线控制肌电假手的识别率高达93.6%,同时PSO-SVM假手在抓握目标过程中能够及时可靠的完成抓握控制任务,具有较高的稳定性,实现滑觉、硬度反馈在模式识别假肢上的实际应用。