摘要

在异构社会网络中,合著关系的预测是具有代表性的一类关系预测,与同构网络的链接预测方法在节点表示、网络构造等方面存在较大差异。综合考虑异构社会网络特有的元路径信息和节点属性特征,提出了节点的复合向量化表示:将节点的TF-IDF特征与基于Metapath2vec算法的向量化表示相结合;在元路径的表示上采取元路径中同类型节点归并重构的方法,以提取元路径中同类型节点间的隐含信息;并通过卷积神经网络(CNN)实现学术网络的合著关系预测。实验结果表明,节点的复合向量化表示及重构元路径方法可以更好地表征异构社会网络,与其他方法对比中均获得更好的预测评价指标。