摘要

信息网络中基于节点间情感关系分析的链路情感倾向预测在商业营销、内容推荐等领域应用广泛,是网络分析的一个研究重点.传统的链路情感倾向预测方法对于数据信息的挖掘不够充分,忽略了对数据深层语义以及节点属性等信息的利用,预测准确度有待提升.针对以上问题,提出了异质网络中融合多种类型信息的链路情感倾向预测模型.模型首先引入预测基值作为特定节点间情感关系的粗略评估,然后结合节点的相似关系以及节点的属性等信息来完成预测.其中,在捕获网络中具有相似情感倾向的节点用于预测任务时,提出了一种基于限制路径类型元路径的遍历游走方法.在5个公共数据集上的实验结果验证了所提模型的有效性及对于稀疏矩阵、冷启动问题的处理能力,并揭示了模型各组成部分在预测过程中的作用.