摘要
针对高精度电力负荷预测问题,构建了相似数据选取和改进梯度提升决策树的新预测方法。该方法借助灰色关联分析等方法计算历史日与待预测日在气象、时间和前趋势等类特征因子上的局部相似度,依据取小综合相似度选择相似历史日数据组成训练数据集;进而,引入相似度加权损失函数,改进梯度提升决策树算法。仿真结果表明,其预测平均绝对百分比误差小于2.2%,日最大误差不超过6%;与BP神经网络和梯度提升决策树相比,其日平均绝对误差、日最大误差及周平均误差均方差分别减少1.136%和0.316%、4.738%和1.324%以及1.062和0.822。
-
单位数理学院; 新疆财经大学; 华北电力大学; 数学学院