摘要
为了改善云资源调度的性能,解决水波优化算法因水波衰减系数和碎波系数设置不当而导致精度降低的问题,提出人工蜂群-水波优化算法,采用人工蜂群算法对水波衰减系数和碎波系数进行参数寻优求解;在初始化任务实例生成的样本集和水波个体后,采用3个优化指标的加权和作为适应度函数,构建基于人工蜂群-水波优化算法的云资源调度模型,将最优求解问题转变为最优水波个体问题;通过不断更新最优适应度个体,提高云资源调度适用性,以达到最大迭代次数时所获得的最优云资源调度参数组合作为最优个体。结果表明:与常规水波优化算法相比,当任务数为600时,所提出算法的承载任务量分布更均匀,且负载均衡指标更小,仅为1.71;与基于其他智能优化算法的云资源调度模型相比,所建立模型所需执行时间最短,且稳定性更好。
-
单位湖南工商大学; 闽江学院; 湖南化工职业技术学院; 湖南信息学院