摘要
齿轮发生局部故障时会产生周期性冲击激励,如何在早期故障阶段或强背景噪声下提取齿轮局部故障分量一直是故障诊断的难点。针对此问题,提出一种基于滑窗相关和重叠群稀疏的齿轮局部故障特征提取方法。该方法先利用移不变K-SVD算法学习到的故障冲击模式与原始信号进行滑窗相关,对隐藏在噪声中的冲击分量进行特征增强,再利用冲击分量所具有的群稀疏特性,通过重叠群稀疏算法直接从相关信号中提取包含故障周期特征的群稀疏成分,并进一步重构出冲击信号。利用所提方法,齿轮局部故障仿真和实验信号中的故障特征和冲击分量均被很好地提取出来。此外,通过与谱峭度以及其他同类方法的对比进一步说明了所提方法的优越性,通过在正常齿轮信号上的分析也验证该方法不会产生误诊。
- 单位