摘要
随着汽车座舱的发展,通过对车内乘客手部进行运动跟踪,实现与车内灯具交互的应用成为了市场热点需求。但手部小目标易漏检的问题会造成目标缺失与跟踪不连续。提出一种车载手部小目标运动跟踪算法。首先,改进了YOLOv4-Tiny目标检测算法,通过将特征融合层的浅层特征进行多次卷积和下采样,并与深层特征拼接,使深层获得更多的细节特征信息;然后,将检测结果传入DeepSORT算法进行多目标跟踪,实现对手部的运动跟踪。在嵌入式平台实验结果表明:改进后YOLOv4-Tiny算法的召回率提升9.05%;本文算法相比传统算法,多目标跟踪准确度(MOTA)提升17%,精度(MOTP)提升15%,同时具有较高的实时性。
-
单位常州星宇车灯股份有限公司; 华东师范大学