针对工业自动化场景中工件识别与检测精度不够高、特征提取困难、多工件定位困难等问题,提出一种基于卷积神经网络多特征融合的工件检测算法。工件检测算法是在一种单次目标检测器算法基础上,新增了特征融合结构,将图像深层信息与浅层信息融合而得以改进,由基础网络、自定义网络、特征融合结构和检测网络四部分构成。实验测试表明,对于200个不同工件组成的图像数据集检测的平均精度达99.2%,优于改进前的96.3%,单张图片检测时间为0.026s,基本符合工业自动化场景中的实时性要求。