摘要
针对经典的多约束组合优化问题——多维背包问题(MKP),提出了一种贪心二进制狮群优化(GBLSO)算法。首先,采用二进制代码转换公式将狮群个体位置离散化,得到二进制的狮群算法;其次,引入反置移动算子对狮王位置进行更新,同时对母狮和幼狮位置重新定义;然后,充分利用贪心算法进行解的可行化处理,增强搜索能力并进一步提高收敛速度;最后,对10个MKP典型算例进行仿真实验,并把GBLSO算法与离散二进制粒子群(DPSO)算法和二进制蝙蝠算法(BBA)进行对比。实验结果表明,GBLSO算法是一种有效的求解MKP的新方法,在求解MKP时具有相对良好的收敛效率、较高的寻优精度和很好的鲁棒性。
- 单位