摘要

为解决基于深度学习的成对配准方法精度低和传统配准算法耗时长的问题,本文提出一种基于变分推断的无监督端到端的群组配准以及基于局部归一化互相关(NCC)和先验的配准框架,该框架能够将多个图像配准到公共空间并有效地控制变形场的正则化,且不需要真实的变形场和参考图像.该方法得到的预估变形场可建模为概率生成模型,使用变分推断的方法求解;然后借助空间转换网络和损失函数来实现无监督方式训练.对于公开数据集LPBA40的3D脑磁共振图像配准任务,测试结果表明:本文所提出的方法与基线方法相比,具有较好的Dice得分、运行时间少且产生更好的微分同胚域,同时对噪声具有鲁棒性.