摘要
高精度的短期负荷预测不仅是电力系统运行稳定的关键,也是构建智能电网的必要保证。为提高电力系统短期负荷预测精度,提出了一种基于完整集成经验模态分解(CEEMDAN)、随机森林(RF)和AdaBoost的预测方法。针对传统分解方法不能完整分解原始负荷序列的问题,利用CEEMDAN分解方法为各个阶段的IMF分解信号添加特定的白噪声,通过计算余量信号来获得各个模态分量,然后针对前9个模态分量构建RF预测模型,针对残余量构建AdaBoost预测模型,并对结果进行重构预测,得出未来24h的负荷预测数据。最后将CEEMDAN+RF+AdaBoost方法应用于华中地区的短期负荷预测,在同等条件下,与预测模型CEEMDAN+RF、EEMD+RF+AdaBoost、EMD+RF+AdaBoost、RF及AdaBoost进行试验对比,结果表明所构建预测模型的精度优于其他对比模型,具有很好的理论指导意义和实际应用前景。
-
单位华中科技大学; 国家电网公司