摘要
为了提高旋转机械滚动轴承故障诊断的准确率,提出一种基于变分模态分解(VMD)和缩放变异粒子群算法(SVPSO)优化BP神经网络的旋转机械滚动轴承故障诊断方法。通过在标准粒子群算法中加入缩放因子以及粒子变异操作提升其局部与全局寻优性能,得到一个改进的粒子群算法——缩放变异粒子群算法(SVPSO),再利用该算法优化BP网络的权值与阈值,提高BP神经网络的故障诊断精度;进一步,为了减少输入特征向量对BP神经网络分类性能的影响,采用VMD分解轴承振动信号,并计算其IMF分量时频熵的方法构建信号特征向量。通过与其他采用相同基准轴承数据集的诊断方法作对比,所提方法的故障诊断精度和算法稳定性均得到有效提升。
- 单位