摘要

不同于流水线方式的关系抽取方法,在实体关系联合抽取方式中虽然把实体识别和关系抽取两者结合起来,但损失部分实体特征信息。在以BERT预训练模型为核心的SpERT实体关系联合抽取模型输入阶段,融入置信度较高的词性标注和句法依存关系的先验特征;并在模型的关系抽取层中重用输入信息,为关系抽取任务提供更多的特征;在优化模型的损失函数中加入可训练的参数来自主学习两个子任务的损失占比权重。在三个公共的数据集上进行实验,结果表明这些优化策略能够为SpERT模型带来明显性能提升。

全文