摘要

近年来,基于稀疏特征提取的目标探测方法成为了雷达领域的研究热点。基于正交频分复用调制的外辐射源雷达(简称“外源雷达”)由于发射波形不受控,一方面构建的稀疏模型会随未知发射波形时变,导致相应的目标探测方法计算量大;另一方面目标回波常常因被直达波等强杂波掩盖而面临探测困难。在此背景下,利用外源雷达的正交频分复用波形特点,使用导频位置处频域信道响应提出了一种非时变稀疏模型。接着,把稀疏模型求解的每一次迭代过程替代为一层神经网络,首次研究了基于深度展开网络的智能化外源雷达目标探测实现方法。仿真和实测数据结果表明:所提方法与传统杂波抑制方法在目标探测上性能相近,但有着更低的计算复杂度,且无需人工设计稀疏矩阵等稀疏模型求解参数。