摘要

针对核主成分分析(KPCA)人脸识别算法中对全局特征变化敏感和忽略局部特征的问题,研究了一种基于KL距离的KPCA人脸识别算法。利用KL距离定义了类间距离和类内差异,设定了一个非线性优化函数来最大化类间距离,同时最小化类内差异,使提取的特征更为紧凑可分,并将其应用于KPCA算法中,利用ORL人脸图像库对算法的性能进行了测试。实验结果表明,该算法相对于传统KPCA算法具有更好的识别效果和稳定性。

  • 单位
    燕山大学里仁学院