摘要

利用矩量法求解面体面电场积分方程(SVS-EFIE),公式复杂,实现困难,算法复杂度高。本文提出求解任意金属—介电混合体电磁散射问题的通用矩阵方程(GME),并给出该方程的增强解。矩量法只考虑包含3个区域的金属—介电混合体,且SVS-EFIE的两步过程导致两个积分符号,难以实现且算法复杂度高。为解决该问题,本文首次提出能够用于分析均匀介质体和超过3个区域金属—介电混合体的GME方法。提出基于耦合度和子区域间距相关的GME加速求解策略,并自适应设置耦合度标准以平衡精度和效率。将变形后的加法定理用于强耦合情况,将迭代法用于弱耦合情况。并行性可以方便地应用于该增强解。数值结果表明,与直接解相比,该方法平均只需11.6%的内存和11.8%的中央处理器时间。

  • 单位
    浙江大学; 计算机辅助设计与图形学国家重点实验室