摘要

链路预测是复杂网络分析领域的一项重要研究课题,可被应用于许多实际应用场景,如推荐系统、信息检索和市场分析等.不同于传统的链路预测问题,针对有时间窗口的时序链路集合,需预测未来任意时刻链路的存在情况,即探究时序网络的演化机制.为解决这一问题,结合生存分析和博弈论,提出一种有效的半监督学习框架.首先,定义一个ε-邻接网络序列模型,并利用每条链路的时间戳信息生成真实的网络演化序列.为捕捉网络演化规律,为每条链路定义一组基于邻居相似性的特征向量,并采用Cox比例风险模型来估计该特征向量的协变量系数.为缩小搜索空间,提出一种基于博弈的双向选择机制来预测未来的网络拓扑结构.最后,提出一种基于多智能体自治计算的网络演化预测算法,并在多个真实时序网络数据集上验证了算法的有效性和高效性.