摘要

铁道车辆轮对轴承在故障发展的早期阶段,其振动信号中故障冲击成分比较微弱,容易淹没在轮轨冲击的强背景噪声中,在根据多点峭度谱周期区间最大值选择时总是选出干扰噪声周期而非故障周期,导致所提取信号中包含的故障信息较少,难以识别轴承故障。针对这一问题,提出了基于Teager能量算子的改进MOMEDA方法,采用Teager能量算子增强原始信号的冲击性和周期性,确保MOMEDA算法选取到精确的故障周期,进而准确提取轴承故障信息,同时引入周期误差率指标,用于衡量实际周期偏离理论周期的程度。通过仿真信号与货车轮对轴承试验及高铁轴承试验的验证,可以发现该方法提取故障信息的准确性较传统方法有了很大提升。研究结果对提升现有铁路轴承故障识别的准确率具有一定的理论和应用价值。