摘要

为快速准确获取灌区渠系分布信息,科学调配区域农业水资源、提高水资源利用率,通过基于全卷积神经网络(Fully convolutional networks,FCN)的语义分割模型进行渠系轮廓提取。利用无人机采集正射影像并进行标注,以VGG-19网络为基础,通过多尺度特征融合的方式实现FCN-8s结构,使用Tensorflow深度学习框架构建FCN渠系提取模型;对数据集进行数据增强,分割后放入FCN模型中训练、测试。实验结果显示,针对不同复杂程度的测试区域,FCN模型的提取准确度、完整度、精度均高于支持向量机方法和改进霍夫变换方法,均值分别为95. 78%、92. 29%、89. 45%。结果表明,该方法能够实现灌区渠系轮廓的高精度提取,具有较好的泛化性和鲁棒性。