摘要

针对BP神经网络算法对电动汽车锂离子电池荷电状态(SOC)估算的缺陷,提出粒子群(PSO)优化BP神经网络的方法,采用温度、电压、电流、充放电倍率作为PSO-BP神经网络的输入向量,以SOC作为输出向量,进行网络学习和训练,并不断进行神经网络权值、阈值的调整优化。在Matlab中进行仿真验证,实验结果表明BP神经网络算法和PSO-BP神经网络算法均可以使误差减小,但是使用PSO-BP神经网络算法估算SOC效果更优、误差更小、收敛性更佳,可将误差减小到4%以内。