摘要
深度学习方法因其具有学习能力强、覆盖范围广、自适应力强、可移植性好等优点,适用于解决实际生产的非线性问题,在农业领域得到了广泛研究和应用。文章简述了深度学习的概念及其特点,从种植业和养殖业2个方面阐述了深度学习在农业领域的研究现状;详细介绍了在分类识别、病虫害识别及预测、动物身份识别及行为监测等方面的研究进展及效果;总结了目前制约深度学习方法进一步应用的原因是样本数据量大、处理要求高和硬件不匹配等;最后对深度学习的发展趋势进行了展望。
-
单位宁夏农林科学院农业经济与信息技术研究所