摘要

作为高陡岩质边坡建模的重要先决条件,快速精准地进行岩坡表面裂隙网络的参数化建模近年来成为了研究的热点。研究引入深度学习技术与智能算法聚类思想,提出了一种结合无人机摄影技术的高陡边坡坡面裂隙网络智能识别与几何参数提取的方法。采用空洞卷积算法对传统U-net分割识别网络进行改进,并运用GMM-EM算法对识别出的二值图中的裂隙进行聚类,最后引入RANSAC算法实现裂隙面的几何参数自动提取并运用DICE相似系数对识别结果进行对比分析。结果表明,该方法裂隙提取的准确率高于97%,相较于传统算法有所提高。同时,将该方法应用于云南鲁奎山铁矿边坡工程,实现了高陡岩坡表面裂隙信息的快速采集,为后续高陡岩质节理边坡建模提供了必要的技术支撑。

  • 单位
    土木工程学院