摘要

为提高列车定位的精确性和连续性,采用北斗卫星接收机和惯性测量单元构建车载组合定位系统.针对多传感器组合定位信息融合估计的非线性和鲁棒性需求,将抗差估计理论的等价权原理应用于标准无迹卡尔曼滤波(unscented Kalman filter,UKF)算法,构造了一种改进的UKF算法,通过对标准UKF算法的噪声协方差进行等价替换,从而起到调节滤波增益的作用,使得滤波算法对传感器观测粗差具有较强的抑制能力.将改进的UKF算法与标准UKF算法应用于列车组合定位进行仿真比较,结果表明:传感器无观测异常时,改进UKF算法的滤波精度总体上略优于标准UKF算法;当传感器观测值含有随机粗差时,改进UKF算法的滤波精度及稳定性明显优于标准UKF算法,北向、东向位置平均估计误差分别降低了48.5%、48.8%,北向、东向速度平均估计误差分别降低了43.7%、48.9%.