摘要

为提高红外图像中目标检测的精度,提出一种基于CenterNet与OMix增强的半监督红外图像目标检测算法(IRCC-OMix)。针对红外图像中锚框先验信息难以确定的问题,利用CenterNet作为主干模型,通过关键点检测红外图像中的目标。由于红外图像标注成本昂贵,引入基于教师学生网络互学习的半监督学习方法,设计基于CenterNet与基于一致性的半监督红外图像目标检测(IRCC)模型。IRCC模型中的随机擦除(cutout)增强可能导致红外图像中的小目标消失,影响模型检测性能,因此采用一种基于目标的图像混合增强方法,提升算法对小目标的检测能力。在公开数据集FLIR上的实验结果表明,IRCC模型的平均精度均值(mAP)达到55.3%,与仅使用有标签数据训练情况相比,mAP提升1.9个百分点,说明该模型能够充分利用无标签数据、提高模型的鲁棒性。基于OMix增强的IRCC模型的mAP为56.8%,与使用cutout增强的IRCC模型相比提高1.5个百分点,取得了良好的检测性能。

  • 单位
    电子工程学院