摘要

针对人脸图像修复的深度学习网络存在修复后的人脸图像面部语义信息不合理和面部轮廓不协调的问题,提出了一种基于人脸结构信息引导的人脸图像修复网络。首先,采用编码器-解码器网络技术构建人脸结构草图生成网络,并在结构草图生成网络的生成器中加入跳跃连接和引入带膨胀卷积的残差块以生成待修复区域的结构草图。其次,在构建人脸修复网络时,在修复网络生成器中引入注意力机制,让修复网络在修复过程中更多关注待修复区域,并以生成的人脸结构草图为引导从而实现人脸图像面部语义结构和纹理信息的生动修复。最后,在结构草图生成网络的损失函数中引入特征匹配损失进行模型训练,从而约束生成器生成与真实结构草图更相似的结果;在修复网络的损失函数中联合感知损失和风格损失进行模型训练,从而更好地重建待修复区域的人脸图像面部轮廓结构和颜色纹理,使修复后的图像更接近真实图像。对比实验结果表明,在人脸图像数据集中,本文所设计的网络模型的修复性能有较高的提升。

  • 单位
    四川轻化工大学