摘要

针对传统基于归一化植被指数(normalized difference vegetation index,NDVI)的作物长势监测方法对于同一时期处于不同生育阶段的作物缺乏可比性,以及NDVI的高低不能直接代表产量的高低的问题,该研究设计了一种可以动态反映作物长势和产量变化的具有时空可比性的统计指数(作物产量指数)。以黑龙江省为例,基于单产数据、气象数据、遥感数据、作物分布数据,对3种作物分别进行估产分区,综合使用随机森林重要性评价方法和留一法为各估产分区筛选最优估产建模变量,构建动态估产模型和产量指数计算模型,并在2022年作物生长季(6—9月)进行了大豆、玉米、水稻的动态估产和产量指数预报和分析。结果显示:1)建模指标的重要性从高到低依次为趋势单产、遥感植被指数、气候类指标。2)3种作物整体单产预测精度最高的为水稻,其平均绝对相对精度(mean absolute relative precision,MARP)为95.20%,其次是玉米(MARP为93.81%),最后是大豆(MARP为92.73%)。3)以历史5 a为基期计算的3种作物的6—9月的产量指数的对比结果显示,大部分区县3种作物各月的产量指数差异处于“平”状态。4)生长季产量指数的月环比结果显示大部分区县产量指数的月环比值处于-0.01~0.01之间。该研究设计的作物产量指数可用于比较某一统计单元(如县、市或省)在特定评估时间点相对于其历史平均单产的增减状况,也可以环比相邻两个评估时间点的产量变化情况;在空间维上可以比较同处于某个特定评估时间点的不同统计单元的单产指数的高低情况,在长势监测、产量预报等中具有很好的应用前景。