摘要
在分析模糊Petri网推理机制的基础上,将优化算法ACA(Ant Colony Algorithm)引入至FPN(Fuzzy Petri Net)的学习能力问题中。针对一知识库系统的具体实例,探讨该算法在FPN学习能力问题中的具体实现,并结合传统优化算法对比分析了它们各自的特点和性能优劣。仿真实验表明,ACA算法整体性能最佳,训练出的参数正确率较高,且所得的模糊Petri网具有很强的泛化能力和自适应功能。
-
单位长沙理工大学; 湖南外贸职业学院