摘要
针对复杂电磁环境下通信辐射源个体识别问题,提出了一种小样本条件下基于深度置信网络的通信辐射源个体识别方法.首先分析通信辐射源信号频带内互调干扰信号的幅度和相位特性,建立基于互调干扰信号的通信辐射源个体特征;然后对辐射源信号进行预处理得到通信辐射源信号的矩形积分双谱,再采取对比散度的方法,利用高阶谱自底向上训练每个受限玻尔兹曼机,通过多次迭代得到合适的权重、隐藏层的偏差和可见层的偏差,从而提取出辐射信号的互调干扰信号特征;最后使用softmax分类器对训练模型进行微调,获得面向通信辐射源细微特征识别的深度学习网络.通过计算机的仿真得到了超过80%的识别率,进一步验证了该方法的有效性.
- 单位