摘要
稀疏表示已经成为运动目标检测的有效方法之一,但其还没有很好地解决目标检测的快速性和鲁棒性.本文基于最大后验概率提出了一种快速鲁棒的运动目标检测模型,并设计了该模型的求解算法.该算法包括两个阶段:在第一阶段利用编码迁移实现稀疏系数的快速求解;在第二阶段基于运动目标的空间连续性结构,利用图切实现目标检测.在多个具有挑战性的图像序列上的实验结果表明,与其他经典运动目标检测算法相比,本文方法在快速性和鲁棒性方面具有较优的性能.
- 单位
稀疏表示已经成为运动目标检测的有效方法之一,但其还没有很好地解决目标检测的快速性和鲁棒性.本文基于最大后验概率提出了一种快速鲁棒的运动目标检测模型,并设计了该模型的求解算法.该算法包括两个阶段:在第一阶段利用编码迁移实现稀疏系数的快速求解;在第二阶段基于运动目标的空间连续性结构,利用图切实现目标检测.在多个具有挑战性的图像序列上的实验结果表明,与其他经典运动目标检测算法相比,本文方法在快速性和鲁棒性方面具有较优的性能.