摘要

多示例多标记学习是用多个示例来表示一个对象,同时该对象与多个类别标记相关联的新型机器学习框架.设计多示例多标记算法的一种方法是使用退化策略将其转化为多示例学习或者是多标记学习,最后退化为传统监督学习,然后使用某种算法进行训练和建模,但是在退化过程中会有信息丢失,从而影响到分类准确率.MIMLSVM算法是以多标记学习为桥梁,将多示例多标记学习问题退化为传统监督学习问题求解,但是该算法在退化过程中没有考虑标记之间的相关信息,本文利用一种既考虑到全局相关性又考虑到局部相关性的多标记算法GLOCAL来对MIMLSVM进行改进,实验结果显示,改进的算法取得了良好的分类效果.