基于可视分析和图卷积的MOOC推荐模型

作者:连远锋; 王明月; 王智广; 孙雷
来源:实验技术与管理, 2022, 39(06): 34-42.
DOI:10.16791/j.cnki.sjg.2022.06.007

摘要

针对MOOC平台下课程推荐过程中存在的数据稀疏和推荐效果不佳的问题,提出融合可视分析的图卷积课程推荐模型。首先,引入可视分析来展示课程间的相互关系,为图卷积模型提供先验知识;其次,提出了一个时空融合的图卷积MOOC推荐模型,用来同时提取数据的时空演变特征;最后,通过在损失函数中引入正则化项来防止训练过程中的过拟合。结果表明:新模型的预测误差和运行效率取得了更加优异的结果。此外,开发实现了融合可视分析与图卷积的MOOC推荐系统,运行结果显示该系统能够有效预测学习者的喜好和需求。